
Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 3, Issue 2, August (2015)

ISSN: 2395-5317 ©EverScience Publications 28

An Empirical Model of Regression Testing Using

Hybrid Criteria

Posham Bhargava Reddy

JNTUA College of Engineering, Ananthapuramu, India

Abstract – Regression testing is an important of test case

generation, coverage calculation, test case prioritization, test suite

reduction (also called minimization), and test case selection are

typically centered around a hybrid criteria that determines test

case selection and test case executions. Regression test case

selection describes three ways of combing hybrid criteria of

integer programming i.e. max-max, max-min, min-min.

Regression testing techniques are heuristics, however, and to

properly evaluate their cost-effectiveness in practice, empirical

studies are essential for retesting. Regression testing strategy

usually refers to a rational way to define regression testing scope,

coverage criteria, re-testing sequence and re-integration. Test

case generation used an integer liner programming based on

multi-criteria selection. Test case prioritization technique has

used min greedy technique. The prioritization technique increase

reliability of prioritization based on code coverage calculation.

Test suite reduction applies an over writes of test cases. Test

selection based on predetermined number of test cases in java file

constrains of class, methods, lines, blocks, and instructions. Test

cases has uniformly increases and decreases of code coverage

percentile of test cases.

Index Terms – Regression Testing, generation, selection,

prioritization, hybrid Test Case Selection.

1. INTRODUCTION

Testing activities occur after software changes or modifications

on a program, Testing is mainly verifies or checking to errors,

bugs and faults of programming languages or it is process of

executing software programming languages to finding errors.

Software Programming Languages (SPL) based on testing

process determines or checks specification functionality,

performance, verification, validation, quality and assurance.

Effective testing delivers quality of products, i.e. user’s needs,

requirements, and expectations [10], [9], [8].

Today’s world, many organizations will maintain the

regression testing in the maintenance phase of errors and bug

repositories to store the bunch of bug or error reports, which is

useful for developers in the future of adding and increasing or

decreasing the lines of code. A software developer working on

a project they often visit the bug reports to understand the root

causes of specific bugs and errors how previous actions has

been taken to resolve the problem.

D. Cubranic et al. [12] proposed a search recommendation

system which can help a developer to identify similar bugs and

errors from bug repository. The developer needs to go through

all recommended bug reports to identify the useful information

relevant to what the developer wants modify the data. Trawling

through a flood of data for all recommended bugs might

consume more time. The developers still need to follow the

monotonous process. G.C. Murphy. [12] Suggested that when

bug report is resolved and closed, its respective author should

write the summary of abstracts manually. This abstracted

summary is helpful for developers who will visit the error

report in the future and allow them to better understanding of

the bugs and errors. However, in this method the developer

who creates the abstracted summary wants to read the all

conversations which are taking place between several

stakeholders. So, it takes a lot of time to go through the flood

of text and need human resources more. Because of the

dynamic nature of bug report and requirement of human

resources, it is not an optimal solution and not working in

practice. Therefore, there is a need for automatic test case

generation.

Ever line of software programming under code checks and

verify-validate the test cases, whenever generates test cases

there is no problem of the code. If may not possible to generate

test cases there is problem on programming or code. The Code

verifying line by line and checks the errors and fix that errors

by automatically. Testing is reduces the risks of software

because mainly risks comes under testing phase that why

coding-testing phases are very difficult.

Software testing is important phases in Software Development

Life Cycle (SDLC) and the software systems. It evaluates the

capability or any attribute of the software program for

achieving its desired results. Purpose of software testing can be

quality assurance, verification and validation and reliability

estimation. It can also be used as a generic metric.

The testing purpose is reducing the risks of the software. The

unidentified factors are in the development, design and testing

of new software can degrades the project quality of the

software and delays it. By using a development cycle of testing

and resolution you can recognize the level of risk, make well-

versed decisions and ultimately reduce ambiguity and

eliminate errors [10].

The automatic test cases generation is retests after fixes to the

errors that ensure issues have been resolved before

development of the progress. It has reduction of the test cases

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 3, Issue 2, August (2015)

ISSN: 2395-5317 ©EverScience Publications 29

in data, if the data has same the test cases are reduced in

retesting of the automatic based on repeating tests in parallel

areas and to fixed unexpected behavior of the data.

 Avoiding generation of the test cases that are repeated
test cases in automatically using regression testing
Based Approach.

 Generating the distinct test cases using prioritization
based on different criteria.

 Improving code coverage based on hybrid criteria of
test cases.

 Finally, an empirically model was performed to the

test case generation and how it is prioritization based

on section of the test cases of the regression testing

understandable over the code coverage of the data

repot.

2. RELATED RESEARCH WORK

G. Rothermel. [3] was different test case generation are defined

and how to generate test cases of the data and prioritization of

the formulas based on generation. The techniques are available

to without modifications based on developed of test cases. The

report of generating test cases of the model of the prioritization

techniques are the test case generation models.

According to D. Cubranic [12] the summary of test cases

produced for one by one test cases, hat contains performed of

information of the test cases of the original data. Above

definition states that a summary should not exceed 50% of the

length of original texts. G.C. Murphy. [12] States that system

generated summary must close to the human generated abstract

summary. Automated text summarization aims to provide a

condensed representation of the content according to the

information that the user wants to get.

There are many techniques available for regression test case

selection and prioritization. The empirical studies are reveal of

different programs and techniques of relative performance of

information; Regression testing is required consistent different

programs and different criteria. Also many of these techniques

use a single criterion and therefore the fault revealing

phenomenon is probabilistic in nature. This limits their fault

detection capability. The formation of regression testing

selection, prioritization, and hybrid criterion approaches are

very consistent to the previous techniques of the regression

testing.

S.Sampath. [1] [2] has used Integer Linear Programming (ILP)

with defined to developed error detection rates from previous

runs for reduction of test suite and also combined different

criteria in different ways such combinations were useful. The

average percent of fault detection (APFD) was not increase

number of test cases based on prioritization of test cases. Bryce.

R has implemented the stand-alone criteria, second-order

criteria ……and, n-order criteria were defined. The test cases

has used in rank, merge, and choice based on implemented to

the regression test cases, default the test cases generated with

prioritization so code coverage has implemented of statement

coverage, branch coverage and method coverage as usage

based criteria. They evaluated to find APFD approach based on

developed web applications so they didn’t generate distinct test

cases using different criteria and also not improving code

coverage percentile of the methods. They gave differentiate the

stand alone criteria versus hybrid criteria based on fault

detections i.e. study of standard alone versus the hybrid criteria

referees to advantage and disadvantages of the hybrid criteria,

They had empirically measured, the methodology based on

results are defined representation of multiple data distribution

and cover maximum of the distribution.

Hyunsook Do.[5][9] defined test reduction using different

criteria models based on implemented they proposed 3 policies

that are :weighted, prioritized, and hybrid. The first policy is

considered to weight of every object and considered all criteria

with test suite reduction. Second policy is defined test case

prioritization of the weighted and hybrid criteria. Third policy

is hybrid, this divides single objectives …….and, n-order

objectives with assign priorities. They methodology is seven

programs from Siemens suite and additionally flex, logic blox,

eclipse also from SIR [5]. They combined seeded and real

faults in proposed system i.e. converged to solution quickly of

most reduction problems and reduction with tie-breaking

(RTB).

Elmar Juergens [6], [4], [3] methodologies were defined two

that are: execution time and code coverage. First method is

reduces execution time of test suite and second method is code

coverage method of fault detections based on implemented

with genetic algorithm approach. There experiments are

defined two applications that are Gradebook and JDepend .so

proposed with their time –aware prioritizations outperform

techniques.

3. REGRESSION TESTING USING HYBRID

CRITERIA

3.1. Test case generation

In Generation, the test cases for the program to be tested are

generated using the general random test case generation

method. The generated test cases are then executed against the

program and their execution details are captured. The execution

details include execution time of the test case, code coverage

data of the test case, and the detected faults.

Input: Software program

Output: Test suite and Execution details of test cases

Methodology: Test case generation technique

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 3, Issue 2, August (2015)

ISSN: 2395-5317 ©EverScience Publications 30

Steps:

1. Select the program for test case generation.

2. Consider the program line by line

2.a If a software element

Then generate and save the value

Else go to next line

3. Execute the test cases against the program.

4. Record execution details

3.2. Coverage calculation

Coverage module uses the code change data and change

impacted code data to choose all the test cases that come in the

limit of the changed code area. Then it determines the sum of

coverage, max-min criterion and the coverage size of each test

case.

Input: Code change data and test suite

Output: Possible set of test cases and its Coverage data

Methodology: EMMA code coverage tool

Steps:

1. Fetch the code change data.

1.a Compare P and P’ line by line

1.b If changed

 Then add to code change data

 Else Go to next line

2. Select the possible test cases with respect to code

change data.

2.a Compare test case with code change data

2.b If test case covers

Then select the test case

Else Go to 2.a

3. Determine coverage of test cases with EMMA.

3.3. Integer programming

This module formulates an Integer programming problem

using the coverage criteria from the coverage module. An

optimal solution is formed with Linear programming technique

and a solution point is obtained.

Input: Coverage data of set of test cases

Output: A sub-optimal solution set of test cases

Methodology: Simplex method for linear programming

Steps:

1. Formulate Integer linear programming with

coverage data.

1.a Calculate fault detection capability

 dm (S) = ∑ 𝛿𝑚(𝑠𝑛)
𝑠𝑛∈𝑆

1.b Formulate D-functions for coverage criteria

Dsum (S) = ∑ 𝑤𝑚 𝑑𝑚(S)
𝑎𝑚∈𝐴

Dmin (S) = min wmdm (S)

2. Solve IP problem using linear programming.

3.4. Test Case Selection

In this module a voting scheme for selected the final set of test

cases from the solution set obtained from the integer

programming module. For this, some elite subset of the

solution points are decided. These points vote for the test cases

to be included in the final solution, which are the selected test

cases.

Input: The sub-optimal solution set of test cases

Output: Final solution set of test cases

Methodology: Voting scheme

Steps:

1. Select elite points from the sub-optimal solution set.

1.a Get upper bound value of Dmin

2. Apply voting scheme.

2.a Elite points vote for favored test cases

2.b For each test case

 If (vote >2)

 Then add to final solution

 Else

 Ignore the test case

3. Get the final solution set

3.5. Test Case Prioritization

The selected test cases from the selection module are

prioritized here. The technique used is an algorithm called

MIN-greedy.

Input: Final solution set of test cases

Output: Prioritized set of test cases

Methodology: MIN-greedy prioritization technique

Steps:

1. Fetch the coverage data and change degrees of

software elements A.

2. Get the set of bottleneck elements

2.a If current coverage of A = minimum

 Add the elements to the set

 Else go to next element

3. For each test case

3.a Find the number of bottle neck elements

covered.

4. Sort the software elements

4.a If current coverage(Ai) < Current coverage

(Ai+1)

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 3, Issue 2, August (2015)

ISSN: 2395-5317 ©EverScience Publications 31

Then add Ai to first position

 Else add Aj to first position

 Increment I;

 Go to 4.a

5. Get the test case that covers most number of test

cases

5.a Add the test case to final list

5.b If coverage (Ti) = coverage (Ti+1)

 Then test case with largest coverage

for first element added to list

 Else

 Take the second element in the

ordering

 Else

 Test case with largest index added

to list

6. Get the final solution set.

4. METHODOLOGY AND DEMONSTRATION

Regression testing using hybrid criteria has used in algorithms

of test case generation, coverage calculation, integer

programming, and test case selection

 case generation technique

A general test case generation technique is applied to the input

program. The test cases are generated and are stored for further

selection and prioritization.

 Integer programming based multi-criteria selection

technique.

The multiple criteria as input and using it an integer linear

programming problem is formulated. The multiple criteria

include the coverage data of the test cases which covers the

changed area of code. The coverage data id used to formulate

the integer programming problem. The IP problem is solved

using linear programming technique since IP is a NP hard

problem and a sub-optimal solution set is obtained [3]. To

select the optimal sets of test cases, a voting scheme is used.

First some elite points are selected from the sub-optimal points.

Each facade of a test case is one of the “elite” result points is a

vote for that test suite of test cases. After the voting is achieves,

the L test cases that have the upper most votes are selected, as

long as they have at least two votes.

 Min-greedy (GMIN) algorithm for prioritization.

This technique prioritizes the selected test cases on the basis of

coverage data and change degree of the code. The MIN-Greedy

algorithm takes two sets of inputs: coverage data, and the

priority measure for software elements. The software elements

with minimum current coverage are found out and the test cases

that cover these elements are identified. Then the software

elements are sorted based on ascending current coverage. The

algorithm adds test cases to the result set one by one in

iterations. Every iteration has maintains the result set based

algorithm takes the adding the data of the every iteration. It

keeps of the code coverage percentile of the every program

software programming of the code after adding test cases so far

obtained the result set.

4.1. DEMONSTRATION

The regression testing using hybrid criteria firstly generated
test cases with code coverage approach .the generation
technique to take input has a programming and gives the test
suite with code coverage percentile .it captured the execution
of program profile, if the data has changed again retesting with
changed data and previous data based on code coverage
technique

Consider any java program P and programming test cases
T={t1,t2,t2,t4……tn}.programming contains some parameters
that are classes, methods, packages and lines this are also called
elements A={a1,a2,a3…an}. The test suite has n number of
test cases has generated with code coverage percentile in IP
(integer programming). Function F contains some faults that
detects D-function after achieves a efficient results. D-function
defined capability of detecting faults and code coverage of
elements is S

Assume that let dm (S) capture the capability of detecting faults
and code coverage of elements is S as applied to am є A.

 dm (S) = ∑ 𝛿𝑚(𝑠𝑛)
𝑠𝑛∈𝑆

 (1)

Where δm (sn) captures the test case of effectiveness sn є S as

functional to element am є A.

D-functions has detects sum of coverage and max-min and

max-max criteria are as follows.

Table1: percentile of code coverage in hybrid criteria

NOTE: All values are percentile

Dsum (S) = ∑ 𝑤𝑚 𝑑𝑚(S)
𝑎𝑚∈𝐴

 (2)

 and

Files in
java

Clas
s

Method
s

line
s

block
s

instruction
s

Student.jav
a

100 57.1 88.5 76.6 92.8

Sort file
data

100 75 87.1 83.9 92.5

Jaccard
distance

100 75 79.4 80 86.2

Hybrid
criteria

100 69.6 87.3 78.3 92.2

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 3, Issue 2, August (2015)

ISSN: 2395-5317 ©EverScience Publications 32

 Dmin (S) = min wmdm (S) (3)

Where wm ,dm s are a set of weights emphasize elements of

software that is more important to the detection faults process.

Wm s account for the changes of since last release.

 Hybrid criterion of regression testing using code coverage

checks blocks, classes, lines, methods and instructions. The

above equations 1 is captures the test case of effectiveness

,equation 2 is detects sum of coverage and max-min and max-

max criteria and equation 3 is refers to emphasize elements of

software. The above equations based on developed integer

linear programming technique has defined .IP problems are

formulated to results of solution set obtained. The final test

suite is obtained solution set.

The MIN-greedy algorithm technique used for prioritization of

test cases and code coverage percentile of the test cases [4]. The

below fig1defind phase I and phase II, The phase I describes

generating test case with the adding data or file to test based on

previous data. The phase II describes selection test case and

combinations of hybrid criterion based on generate test case

with efficient test cases. This test cases has efficient because

the code coverage technique used. Phase I is generating test

case given step by step procedure to adding data or files of max-

min criterion of the IP and comes the results adding the solution

set of test suite. Phase II selects the combinations of the test

cases with code coverage technique of MIN-greedy algorithm.

That based generating test cases of coverage percentile comes

in the output of the test cases.

Fig 1: Test cases generation based on code coverage criteria

5. EXPERIMENTAL RESULTS

Regression testing using generate test cases, test case selection,

prioritization with code coverage and integer linear

programming .Test case generates automatically in adding data

of the previous data. Test cases selection takes combinations of

elements i.e. classes, methods, blocks, lines or statements

branch based on code coverage percentile of the user

programmers that is java programming .if adding data in

previous data again generating test cases with code coverage

percentile .Table 1 shows the percentile of the code coverage

and generated test cases.

The above table and below fig 2 graph has represented in code

coverage percentiles of the test case generated with criteria.

Fig 2: code coverage percentile of test cases

6. CONCLUSION AND FUTURE WORK

Regression testing using hybrid criteria describes code

coverage percentile with generating test cases. The

prioritization of test case and test case selection with hybrid

criteria. The hybrid criteria means combinations of classes,

methods, blocks, and lines. This combinations are gives the

more percentile then previous methods. Methodology is

determine test cases with EMMA.

Regression testing combinations are through uniform based on

empirical studies of generating test cases generate. Generating

test cases typically there policies, that are coverage calculation,

test case selection, and test case prioritization. Test case

prioritization results are prioritize test cases, selection is selects

combinations that are classes, methods, blocks, lines…etc. the

coverage calculation depends on classes, methods, statements,

blocks. This combinations based on generates code coverage

percentile.

Regression testing future work anticipate many techniques and

many technology based develop the increases percentile of the

code coverage. Different ways to take different combination

based on generate test cases with coverage percentile of the

java programming of the regression testing. If any language to

generate test cases in different combinations of the code

coverage techniques. it increases more percentile of the code

coverage and better than previous work.

REFERENCES
[1] Sredevi Sampath, Renee Bryce, Atif M. Memon “A Uniform

representation of hybrid criteria for regression testing” IEEE Trans.

Software Eng., vol. 39, no. 10, pp. 1326-1344,Oct.2013.

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 3, Issue 2, August (2015)

ISSN: 2395-5317 ©EverScience Publications 33

[2] S. Mirarab, S. Akhlaghi, and L. Tahvildari, “Size-Constrained

Regression Test Case Selection Using Multi-Criteria Optimization,”

IEEE Trans. Software Eng., vol. 38, no. 4, pp. 936-956, July/Aug. 2012.

[3] G. Rothermel, R.J. Untch, and C. Chu, “Prioritizing Test Cases for

Regression Testing,” IEEE Trans. Software Eng., vol. 27, no. 10, pp.

929-948, Oct. 2001.

[4] Siavash Mirarab, Soroush Akhlaghi, Ladan Tahvildari, “Size-constrained

Regression Test Case Selection Using Multi-Criteria Optimization”.

IEEE Transactions on Software Engineering, June 2011.

[5] Hyunsook Do, Siavash Mirarab, Ladan Tahvildari, Gregg Rothermel,

“The Effects of Time Constraints on Test Case Prioritization: A Series of

Controlled Experiments”. IEEE Transactions on Software Engineering,

volume 36, Sept.-Oct. 2010 Page(s): 593 – 617

[6] Elmar Juergens, Benjamin Hummel, Florian Deissenboeck, Martin

Feilkas, Christian Schlögel, Andreas Wübbeke, “Regression Test

Selection of Manual System Tests in Practice”, 15th European

Conference on Software Maintenance and Reengineering, Page(s): 309

– 312, March 2011

[7] Songyu Chen, Zhenyu Chen, Zhihong Zhao, Baowen Xu, Yang Feng,

“Using Semi-Supervised Clustering to Improve Regression Test

Selection Techniques”, Fourth IEEE International Conference on

Software Testing, Verification and Validation, Page(s): 1 – 10, March

2011.

[8] Alok Ranjan Pal, Projjwal Kumar Maiti and Diganta saha, “An Approach

To Automatic Text Summarization Using Simplified Lesk Algorithm

And Wordnet,” International Journal of Control Theory and Computer

Modeling(IJCTCM), Vol.3, no.4/5, 2013.

[9] X.Wang, L.Zhang, T.Xie, J.Anvik and J.Sun, “An Approach to Detecting

Duplicate Bug Reports Using Natural Language and Execution

Information,” Proc. 30th Int’l Conf. Software Eng. (ICSE ’08), pp. 461-

470, 2008.

[10] S. Breu, R. Premraj, J. Sillito, and T. Zimmerman, “Information needs in

Bug reports: Improving Cooperation between Developers and users,”

Proc. ACM Conf. Computer Supported Cooperative Work (CSCW ’10),

pp. 301-310, 2010.

[11] R. Lotufo, Z.Malik and K.Czarnecki, “Modelling the ‘Hurried’ Bug

Report Reading Process to Summarize Bug Reports,” Proc. IEEE 28th

Int’l Conf. Software maintenance (ICSM ’12), pp. 430-439, 2012.

[12] D. Cubranic and G.C. Murphy, “Hipikat: Recommending Pertinent

Software Development Artifacts,” Proc. 25th Int’l Conf. Software Eng.

(ICSE’03), pp. 408-418, 2003.

